Reverse Mathematics and Arithmetic Transfinite Recursion.

Antonio Montalbán.
University of Chicago.

Harold Washington College
April 2006
What axioms are necessary to do mathematics?

- Is the fifth postulate necessary for Euclidean geometry?
- Is Peano Arithmetic enough to prove all the true statements about the natural numbers?
- Which large cardinals can be proved to exist in ZFC?
Simpson and Friedman’s program of Reverse Mathematic deals with Second Order Arithmetic (\mathcal{Z}_2).

- In \mathcal{Z}_2 we can talk about finite and countable objects.
- \mathcal{Z}_2 is much weaker than ZFC,
- and its much stronger than PA.
- In \mathcal{Z}_2 one can talk about
 - Countable algebra,
 - (non-set theoretic) combinatorics,
 - Real numbers,
 - Manifolds, continuous functions, differential equations...
 - Complete separable metric spaces.
 - Logic, computability theory,...
 -
Simpson and Friedman's program of Reverse Mathematic deals with \emph{Second Order Arithmetic} (\mathcal{Z}_2).

- In \mathcal{Z}_2 we can talk about finite and countable objects.
- \mathcal{Z}_2 is much weaker than ZFC,
- and its much stronger than PA.
- In \mathcal{Z}_2 one can talk about
 - Countable algebra,
 - (non-set theoretic) combinatorics,
 - Real numbers,
 - Manifolds, continuous functions, differential equations...
 - Complete separable metric spaces.
 - Logic, computability theory,...
 -
Simpson and Friedman’s program of Reverse Mathematic deals with *Second Order Arithmetic* (\mathcal{Z}_2).

- In \mathcal{Z}_2 we can talk about finite and countable objects.
- \mathcal{Z}_2 is much weaker than ZFC,
- and it’s much stronger than PA.
- In \mathcal{Z}_2 one can talk about
 - Countable algebra,
 - (non-set theoretic) combinatorics,
 - Real numbers,
 - Manifolds, continuous functions, differential equations...
 - Complete separable metric spaces.
 - Logic, computability theory,...
 -
Fix a base theory.
(We use RCA\(_0\) that essentially says that the computable sets exists)

Pick a theorem \(T\).

What axioms do we need to add to RCA\(_0\) to prove \(T\).

Suppose we found axioms \(A_0, ..., A_k\) of \(\mathcal{Z}_2\) such that

\[
\text{RCA}_0 \text{ proves } A_0 \land ... \land A_k \Rightarrow T.
\]

How do we know these are necessary?

It’s often the case that RCA\(_0\) also proves \(T \Rightarrow A_0 \land ... \land A_k\)

Then, we know that RCA\(_0 + A_0, ..., A_k\) is the least system (extending RCA\(_0\)) where \(T\) can be proved.
Main question revisited

1. Fix a base theory.
 (We use RCA$_0$ that essentially says that the computable sets exists)

2. Pick a theorem T.

3. What axioms do we need to add to RCA$_0$ to prove T.

4. Suppose we found axioms A_0, \ldots, A_k of \mathbb{Z}_2 such that

 RCA_0 proves $A_0 \land \ldots \land A_k \Rightarrow T$.

 How do we know these are necessary?

5. It's often the case that RCA$_0$ also proves $T \Rightarrow A_0 \land \ldots \land A_k$

6. Then, we know that $\text{RCA}_0 + A_0, \ldots, A_k$ is the least system
 (extending RCA$_0$) where T can be proved.
Fix a base theory.
(We use RCA$_0$ that essentially says that the computable sets exist)

Pick a theorem T.

What axioms do we need to add to RCA$_0$ to prove T.

Suppose we found axioms $A_0, ..., A_k$ of \mathcal{Z}_2 such that
RCA$_0$ proves $A_0 \& ... \& A_k \Rightarrow T$.

How do we know these are necessary?

It’s often the case that RCA$_0$ also proves $T \Rightarrow A_0 \& ... \& A_k$

Then, we know that RCA$_0 + A_0, ..., A_k$ is the least system (extending RCA$_0$) where T can be proved.
Main question revisited

1. Fix a base theory.
 (We use RCA$_0$ that essentially says that the computable sets exist)
2. Pick a theorem T.
3. What axioms do we need to add to RCA$_0$ to prove T.
4. Suppose we found axioms A_0, \ldots, A_k of \mathbb{Z}_2 such that
 \[\text{RCA}_0 \text{ proves } A_0 \& \ldots \& A_k \Rightarrow T. \]
 How do we know these are necessary?
5. It’s often the case that RCA$_0$ also proves $T \Rightarrow A_0 \& \ldots \& A_k$
6. Then, we know that RCA$_0 + A_0, \ldots, A_k$ is the least system
 (extending RCA$_0$) where T can be proved.
Main question revisited

1. Fix a base theory. (We use RCA$_0$ that essentially says that the computable sets exist)
2. Pick a theorem T.
3. What axioms do we need to add to RCA$_0$ to prove T.
4. Suppose we found axioms A_0, \ldots, A_k of \mathcal{Z}_2 such that
 \[\text{RCA}_0 \text{ proves } A_0 \land \cdots \land A_k \Rightarrow T. \]
 How do we know these are necessary?
5. It’s often the case that RCA$_0$ also proves $T \Rightarrow A_0 \land \cdots \land A_k$
6. Then, we know that RCA$_0 + A_0, \ldots, A_k$ is the least system (extending RCA$_0$) where T can be proved.
The following are equivalent over RCA$_0$:

- (Weak König’s lemma) Every infinite binary tree has an infinite path.
- Every open covering of $[0, 1] \subset \mathbb{R}$ has a finite subcovering.
- Every countable commutative ring has a prime ideal.

TFAE over RCA$_0$, and stronger than the ones above:

- (Arithmetic Comprehension)
 Every formula without set quantifiers defines a set.
- Every bounded sequence of real number has a convergent subsequence.
- Every countable commutative ring has a maximal ideal.
The following are equivalent over RCA₀:

- (Weak König’s lemma) Every infinite binary tree has an infinite path.
- Every open covering of \([0, 1] \subset \mathbb{R}\) has a finite subcovering.
- Every countable commutative ring has a prime ideal.

TFAE over RCA₀, and stronger than the ones above:

- (Arithmetic Comprehension) Every formula without set quantifiers defines a set.
- Every bounded sequence of real number has a convergent subsequence.
- Every countable commutative ring has a maximal ideal.
The language for \mathcal{Z}_2 has:

- $0, 1, +, \times, \leq, \in$.
- Logical symbols $\&$, \lor, \neg.
- Variables x, y, z... used for natural numbers, and quantification over these $\forall x$... and $\exists x$...
- Variables X, Y, Z... used for sets of natural numbers, and quantification over these $\forall X$... and $\exists X$...

Every countable object can be encoded as a subset of \mathbb{N}.
The language for \(\mathcal{Z}_2 \) has:

- 0, 1, +, ×, ≤, ∈.
- logical symbols \&, ∨, ¬,
- variables \(x, y, z \)... used for natural numbers, and quantification over these \(\forall x \)... and \(\exists x \)...
- variables \(X, Y, Z \)... used for sets of natural numbers, and quantification over these \(\forall X \)... and \(\exists X \)...

Every countable object can be encoded as a subset of \(\mathbb{N} \).
Example of coding

Finite tuples of natural numbers can be encoded by one natural number. (Example, encode \(\langle x, y \rangle \) by \((x + y)^2 + x\).) So, we can deal with \(\mathbb{Z} \) and \(\mathbb{Q} \).

Every finite object can be encoded by a sequence of 0s and 1s, and hence by a single natural number.

So, a subset of \(\mathbb{N}^3 \) can be encoded as a subset of \(\mathbb{N} \).

Example: A countable ring \(A = (A, 0, 1, +_A, \times_A) \) can be encoded by three sets \(A \subseteq \mathbb{N} \), \(+_A \subseteq \mathbb{N}^3 \) and \(\times_A \subseteq \mathbb{N}^3 \).
Example of coding

Finite tuples of natural numbers can be encoded by one natural number. (Example, encode $\langle x, y \rangle$ by $(x + y)^2 + x$.) So, we can deal with \mathbb{Z} and \mathbb{Q}.

Every finite object can be encoded by a sequence of 0s and 1s, and hence by a single natural number.

So, a subset of \mathbb{N}^3 can be encoded as a subset of \mathbb{N}.

Example: A countable ring $\mathcal{A} = (A, 0, 1, +_A, \times_A)$ can be encoded by three sets $A \subseteq \mathbb{N}$, $+_A \subseteq \mathbb{N}^3$ and $\times_A \subseteq \mathbb{N}^3$.
Finite tuples of natural numbers can be encoded by one natural number. (Example, encode \(\langle x, y \rangle \) by \((x + y)^2 + x\).)

So, we can deal with \(\mathbb{Z} \) and \(\mathbb{Q} \).

Every finite object can be encoded by a sequence of 0s and 1s, and hence by a single natural number.

So, a subset of \(\mathbb{N}^3 \) can be encoded as a subset of \(\mathbb{N} \).

Example: A countable ring \(\mathcal{A} = (A, 0, 1, +_A, \times_A) \) can be encoded by three sets \(A \subseteq \mathbb{N}, +_A \subseteq \mathbb{N}^3 \) and \(\times_A \subseteq \mathbb{N}^3 \).
Axioms of \mathcal{Z}_2

Semi-ring Axioms: \mathbb{N} is an ordered semi-ring.

Induction Axioms: For every formula $\varphi(n)$, $IND(\varphi)$

$$(\varphi(0) \& \forall n(\varphi(n) \Rightarrow \varphi(n+1))) \Rightarrow \forall n \varphi(n)$$

Comprehension Axioms: For every formula $\varphi(n)$

$CA(\varphi)$

$$\exists X \forall n \ (n \in X \Leftrightarrow \varphi(n))$$

RCA_0 consists of: Semi-ring Axioms + Σ^0_1-IND + Δ^0_1-CA.

Δ^0_1-CA says that for every computer program p there is a set X such that

$$n \in X \Leftrightarrow p(n) = yes$$

(where p can use information from sets that we know exist)
Semi-ring Axioms: \mathbb{N} is a ordered semi-ring.

Induction Axioms: For every formula $\varphi(n)$,

$$IND(\varphi) \quad (\varphi(0) \& \forall n (\varphi(n) \Rightarrow \varphi(n+1))) \Rightarrow \forall n \varphi(n)$$

Comprehension Axioms: For every formula $\varphi(n)$

$$CA(\varphi) \quad \exists X \forall n (n \in X \Leftrightarrow \varphi(n))$$

RCA_0 consists of: Semi-ring Axioms + Σ^0_1-IND + Δ^0_1-CA.

Δ^0_1-CA says that for every computer program p there is a set X such that

$$n \in X \Leftrightarrow p(n) = yes$$

(where p can use information from sets that we know exist)
Axioms of \mathcal{Z}_2

Semi-ring Axioms: \mathbb{N} is a ordered semi-ring.

Induction Axioms: For every formula $\varphi(n)$,

$$\text{IND}(\varphi) \quad (\varphi(0) \& \forall n(\varphi(n) \Rightarrow \varphi(n + 1))) \Rightarrow \forall n \varphi(n)$$

Comprehension Axioms: For every formula $\varphi(n)$

$$\text{CA}(\varphi) \quad \exists X \forall n \ (n \in X \iff \varphi(n))$$

RCA_0 consists of: Semi-ring Axioms + Σ^0_1-IND + Δ^0_1-CA.

Δ^0_1-CA says that for every computer program p there is a set X such that

$$n \in X \iff p(n) = \text{yes}$$

(where p can use information from sets that we know exist)
Axioms of \mathcal{Z}_2

Semi-ring Axioms: \mathbb{N} is a ordered semi-ring.

Induction Axioms: For every formula $\varphi(n)$,

$$IND(\varphi) \quad (\varphi(0) \& \forall n(\varphi(n) \Rightarrow \varphi(n + 1))) \Rightarrow \forall n\varphi(n)$$

Comprehension Axioms: For every formula $\varphi(n)$

$$CA(\varphi) \quad \exists X\forall n \ (n \in X \iff \varphi(n))$$

RCA_0 consists of: Semi-ring Axioms + Σ^0_1-IND + Δ^0_1-CA.

Δ^0_1-CA says that for every computer program p there is a set X such that

$$n \in X \iff p(n) = yes$$

(where p can use information from sets that we know exist)
The big five

\[\text{\(\Pi^1_1\)-CA}_0 \]
\[\text{ATR}_0 \]
\[\text{ACA}_0 \]
\[\text{WKL}_0 \]
\[\text{RCA}_0 \]
ACA₀

Def:
A formula is *arithmetic* if it has no quantifiers over sets.

ACA₀ is RCA₀ + Arithmetic comprehension.

where *Arithmetic comprehension* is the scheme of axioms

\[\exists X \forall n \ (n \in X \iff \varphi(n)) \]

where \(\varphi \) is any arithmetic formula.

Theorem
The following are equivalent over RCA₀:

- ACA₀
- Every countable vector space has a basis.
ACA₀

Def:
A formula is *arithmetic* if it has no quantifiers over sets.

ACA₀ is RCA₀ + Arithmetic comprehension.

where *Arithmetic comprehension* is the scheme of axioms

\[
\text{CA}(\varphi) \quad \exists X \forall n \ (n \in X \iff \varphi(n))
\]

where \(\varphi\) is any arithmetic formula.

Theorem
The following are equivalent over RCA₀:

- ACA₀
- Every countable vector space has a basis.
WKL\textsubscript{0}

\textit{WKL}\textsubscript{0} is RCA\textsubscript{0} + Weak K"{o}nig’s lemma.

\textit{Weak K"{o}nig’s lemma} says: Every infinite subtree of the full binary tree has an infinite path.

Theorem

The following are equivalent over RCA\textsubscript{0}:

- WKL\textsubscript{0}
- Every continuous function on [0, 1] is uniformly continuous.
The systems in higher end

WKL_0 is $RCA_0 +$ Weak König’s lemma.

Weak König’s lemma says: Every infinite subtree of the full binary tree has an infinite path.

Theorem

The following are equivalent over RCA_0:

- WKL_0
- Every continuous function on $[0, 1]$ is uniformly continuous.
Π\(^1_1\)-separation

Def: A formula is Π\(^1_1\) if it has the form \(\forall X \psi\), where \(\psi\) is an arithmetic formula.

Π\(^1_1\)-CA\(_0\) is RCA+ Π\(^1_1\) comprehension.

where Π\(^1_1\) **comprehension** is the scheme of axioms

\[\text{CA}(\varphi) \equiv \exists X \forall n \ (n \in X \iff \varphi(n))\]

where \(\varphi\) is any Π\(^1_1\) formula.

Theorem

The following are equivalent over RCA\(_0\):

- Π\(^1_1\)-CA\(_0\)
- Every countable Abelian group is a direct sum of a divisible group and a reduced group.

Def: A group \(G\) is divisible if \(\forall a \in G \forall n \in \mathbb{N} \exists b (nb = a)\).

Def: A group \(G\) is reduced if it has no divisible subgroup.
**Π₁⁻⁻ indeb
ATR

ATR \(_0\) is RCA\(_0\) + Arithmetic Transfinite Recursion.

[Simpson] **ATR** \(_0\) is the least system where one can develop a reasonable theory of ordinals.

Theorem

The following are equivalent over RCA\(_0\):

- ATR\(_0\)
- Given two ordinals, one is an initial segment of the other one.

Def: An *ordinal* is a linear ordering without descending sequences. Examples: 1, 2, 3, ..., \(\omega\), \(\omega + 1\), ..., \(\omega + \omega\), ..., \(\omega \times \omega\), ...
Reduced p-groups

Def: A group G is *divisible* $\forall a \in G \ \forall n \in \mathbb{N} \exists b \ (nb = a)$.

Def: A group G is *reduced* if it has no divisible subgroup.

Theorem

TFAE over RCA$_0$

- ATR$_0$
- \[Friedman, Simpson, Smith '77\] Every reduced p-group has an Ulm decomposition.
- \[Friedman '01; M, Grenberg '05\] The reduced p-groups are well-quasi-ordered by embeddability. *That is: there is no infinite descending sequence and no infinite antichain.*

We want to claim:

ATR$_0$ is the least system where one can develop a reasonable theory of reduced-p-groups.
Reduced p-groups

We pick two very basic statements about reduced-p-groups.

\exists-$ISO(\mathcal{R}-p\mathcal{G})$
If $\langle G_n \rangle_{n \in \mathbb{N}}$ is a sequence of reduced-p-groups, there exists a set $X \subseteq \mathbb{N}^2$ such that $\langle n, m \rangle \in X \iff G_n \cong G_m$

\exists-$EMB(\mathcal{R}-p\mathcal{G})$
If $\langle G_n \rangle_{n \in \mathbb{N}}$ is a sequence of reduced-p-groups, there exists a set $X \subseteq \mathbb{N}^2$ such that $\langle n, m \rangle \in X \iff G_n$ embeds in G_m

Theorem

TFAE over RCA$_0$

- ATR$_0$
- \exists-$ISO(\mathcal{R}-p\mathcal{G})$ [Shore, Solomon; M, Grenberg '05]
- \exists-$EMB(\mathcal{R}-p\mathcal{G})$ [M, Grenberg '05]
We pick two very basic statements about reduced-p-groups.

\[\exists \text{-ISO}(\mathcal{R-p-G}) \]
If \(\langle G_n \rangle_{n \in \mathbb{N}} \) is a sequence of reduced-p-groups, there exists a set \(X \subseteq \mathbb{N}^2 \) such that \(\langle n, m \rangle \in X \iff G_n \cong G_m \)

\[\exists \text{-EMB}(\mathcal{R-p-G}) \]
If \(\langle G_n \rangle_{n \in \mathbb{N}} \) is a sequence of reduced-p-groups, there exists a set \(X \subseteq \mathbb{N}^2 \) such that \(\langle n, m \rangle \in X \iff G_n \text{ embeds in } G_m \)

Theorem

\text{TFAE over } RCA_0

- ATR_0
- $\exists \text{-ISO}(\mathcal{R-p-G})$ [Shore, Solomon; M, Grenberg '05]
- $\exists \text{-EMB}(\mathcal{R-p-G})$ [M, Grenberg '05]
Super atomic Boolean algebras

Def: A Boolean alg. B is *atomless* if $\forall x \in B \setminus \{0\} \exists y (0 < y < x)$

Def: B is *superatomic* if it has no atomless subalgebra.

Theorem

[M, Grenberg ’05] TFAE over RCA$_0$

- ATR_0;
- $\exists\text{-ISO}(\text{SABA}); \forall \langle B_n \rangle_{n \in \mathbb{N}} \exists X \subseteq \mathbb{N}^2 \langle n, m \rangle \in X \Leftrightarrow B_n \cong B_m$
- $\exists\text{-EMB}(\text{SABA})$;
- For any two superatomic BAs, one embeds into the other one;
- If two superatomic BAs can be embedded into each other, then they are isomorphic;
- The superatomic BAs are well-quasi-ordered by embeddability.

ATR_0 is the least system where one can develop a reasonable theory of superatomic Boolean algebras.
Super atomic Boolean algebras

Def: A Boolean alg. B is *atomless* if $\forall x \in B \setminus \{0\} \exists y (0 < y < x)$

Def: B is *superatomic* if it has no atomless subalgebra.

Theorem

$[M, \text{Grenberg '05}]$ TFAE over RCA$_0$

- ATR_0
- \exists-ISO(SABA); $\forall \langle B_n \rangle_{n \in \mathbb{N}} \exists X \subseteq \mathbb{N}^2 \langle n, m \rangle \in X \iff B_n \cong B_m$
- \exists-EMB(SABA)
- For any two superatomic BAs, one embeds into the other one;
- If two superatomic BAs can be embedded into each other, then they are isomorphic;
- The superatomic BAs are well-quasi-ordered by embeddability.

ATR_0 is the least system where one can develop a reasonable theory of superatomic Boolean algebras.
Super atomic Boolean algebras

Def: A Boolean alg. B is *atomless* if $\forall x \in B \setminus \{0\} \exists y \ (0 < y < x)$

Def: B is *superatomic* if it has no atomless subalgebra.

Theorem

[Ranjan, Grenberg '05] TFAE over RCA

- ATR_0;
- $\exists\text{-ISO}(\text{SABA})$; $\forall \langle B_n \rangle_{n \in \mathbb{N}} \exists X \subseteq \mathbb{N}^2 \ \langle n, m \rangle \in X \iff B_n \cong B_m$
- $\exists\text{-EMB}(\text{SABA})$;
 - For any two superatomic BAs, one embeds into the other one;
 - If two superatomic BAs can be embedded into each other, then they are isomorphic;
 - The superatomic BAs are well-quasi-ordered by embeddability.

ATR_0 is the least system where one can develop a reasonable theory of superatomic Boolean algebras.
Super atomic Boolean algebras

Def: A Boolean alg. B is *atomless* if $\forall x \in B \setminus \{0\} \exists y \ (0 < y < x)$

Def: B is *superatomic* if it has no atomless subalgebra.

Theorem

[M, Grenberg ’05] *TFAE over RCA$_0$*

- ATR_0;
- \exists-$\text{ISO}(\text{SABA})$; $\forall \langle B_n \rangle_{n \in \mathbb{N}} \exists X \subseteq \mathbb{N}^2 \langle n, m \rangle \in X \iff B_n \cong B_m$
- \exists-$\text{EMB}(\text{SABA})$;
- *For any two superatomic BAs, one embeds into the other one;*
- *If two superatomic BAs can be embedded into each other, then they are isomorphic;*
- *The superatomic BAs are well-quasi-ordered by embeddability.*

ATR_0 is the least system where one can develop a reasonable theory of superatomic Boolean algebras.
Super atomic Boolean algebras

Def: A Boolean alg. B is **atomless** if $\forall x \in B \setminus \{0\} \exists y \ (0 < y < x)$
Def: B is **superatomic** if it has no atomless subalgebra.

Theorem

[M, Grenberg '05] TFAE over RCA_0

- ATR_0;
- $\exists\text{-ISO}(\text{SABA}); \forall\langle B_n \rangle_{n \in \mathbb{N}} \exists X \subseteq \mathbb{N}^2 \langle n, m \rangle \in X \iff B_n \cong B_m$
- $\exists\text{-EMB}(\text{SABA});$
- For any two superatomic BAs, one embeds into the other one;
- If two superatomic BAs can be embedded into each other, then they are isomorphic;
- The superatomic BAs are well-quasi-ordered by embeddability.

ATR_0 is the least system where one can develop a reasonable theory of superatomic Boolean algebras.
Super atomic Boolean algebras

Def: A Boolean alg. B is *atomless* if $\forall x \in B \setminus \{0\} \exists y (0 < y < x)$

Def: B is *superatomic* if it has no atomless subalgebra.

Theorem

[M, Grenberg '05] **TFAE over RCA$_0$**

- ATR_0;
- \exists-$\text{ISO}(\text{SABA})$; $\forall\langle B_n \rangle_{n \in \mathbb{N}} \exists X \subseteq \mathbb{N}^2 \langle n, m \rangle \in X \iff B_n \cong B_m$
- \exists-$\text{EMB}(\text{SABA})$;
- For any two superatomic BAs, one embeds into the other one;
- If two superatomic BAs can be embedded into each other, then they are isomorphic;
- The superatomic BAs are well-quasi-ordered by embeddability.

ATR_0 is the least system where one can develop a reasonable theory of superatomic Boolean algebras.
Super atomic Boolean algebras

Def: A Boolean alg. B is *atomless* if $\forall x \in B \setminus \{0\} \exists y (0 < y < x)$

Def: B is *superatomic* if it has no atomless subalgebra.

Theorem

[M, Grenberg ’05] TFAE over RCA$_0$

- ATR_0;
- $\exists\text{-}\text{ISO}(SABA)$; $\forall \langle B_n \rangle_{n \in \mathbb{N}} \exists X \subseteq \mathbb{N}^2 \langle n, m \rangle \in X \iff B_n \cong B_m$
- $\exists\text{-}\text{EMB}(SABA)$;
- For any two superatomic BAs, one embeds into the other one;
- If two superatomic BAs can be embedded into each other, then they are isomorphic;
- The superatomic BAs are well-quasi-ordered by embeddability.

ATR_0 is the least system where one can develop a reasonable theory of superatomic Boolean algebras.

Reverse Mathematics and Arithmetic Transfinite Recursion.
Countable Compact Metric spaces

Let \(CCMS \) be the class of Countable Compact Metric Spaces.

Theorem

[\(M, \; \text{Grenberg '05} \)] TFAE over \(RCA_0 \)

- \(ATR_0 \);
- \(\exists \text{-ISO}(CCMS) \);
- \(\exists \text{-EMB}(CCMS) \);
- For any two \(CCMS \), one embeds into the other one;
 [\(\text{Friedman, Hirst '91} \)]
- If two \(CCMS \) can be embedded into each other, they are isomorphic;
- \(CCMS \) is well-quasi-ordered by embeddability.

\(ATR_0 \) is the least system where one can develop a reasonable theory of Countable Compact Metric Spaces.
Countable Compact Metric spaces

Let $CCMS$ be the class of Countable Compact Metric Spaces.

Theorem

[M, Grenberg ’05] TFAE over RCA_0

- ATR_0;
- \exists-$ISO(CCMS)$;
- \exists-$EMB(CCMS)$;

For any two $CCMS$, one embeds into the other one;

[Friedman, Hirst ’91]

If two $CCMS$ can be embedded into each other, they are isomorphic;

$CCMS$ is well-quasi-ordered by embeddability.

ATR_0 is the least system where one can develop a reasonable theory of Countable Compact Metric Spaces.
Well founded Trees

Let \mathcal{WFT} be the class of Well-Founded trees, that is, trees with no infinite paths.

Theorem

[M, Grenberg '05] TFAE over RCA$_0$

- ATR_0;
- \exists-ISO(\mathcal{WFT});
- \exists-EMB(\mathcal{WFT});
- For any two \mathcal{WFT}, one embeds into the other one;
- \mathcal{WFT} is well-quasi-ordered by embeddability.

ATR_0 is the least system where one can develop a reasonable theory of Well-Founded trees.
Well founded Trees

Let \mathcal{WFT} be the class of Well-Founded trees, that is, trees with no infinite paths.

Theorem

$[M, \text{Grenberg '05}]$ TFAE over RCA_0

- ATR_0;
- \exists-$\text{ISO}(\mathcal{WFT})$;
- \exists-$\text{EMB}(\mathcal{WFT})$;
- For any two \mathcal{WFT}, one embeds into the other one;
- \mathcal{WFT} is well-quasi-ordered by embeddability.

ATR_0 is the least system where one can develop a reasonable theory of Well-Founded trees.
Theorem [Fraïssé’s Conjecture ’48; Laver ’71]

FRA: The countable linear orderings form a WQO with respect to embeddability. (i.e., there are no infinite descending sequences and no infinite antichains.)

Theorem [Shore ’93]

FRA implies ATR\(_0\) over RCA\(_0\).

Conjecture: [Clote ’90][Simpson ’99][Marcone]

FRA is equivalent to ATR\(_0\) over RCA\(_0\).
Fraïssé’s Conjecture

Theorem [Fraïssé’s Conjecture ’48; Laver ’71]

FRA: The countable linear orderings form a WQO with respect to embeddability.
(i.e., there are no infinite descending sequences and no infinite antichains.)

Theorem [Shore ’93]

FRA implies ATR$_0$ over RCA$_0$.

Conjecture: [Clote ’90][Simpson ’99][Marcone]

FRA is equivalent to ATR$_0$ over RCA$_0$.
Fraïssé’s conjecture.

\(\text{RCA}_0 + \) Fraïssé’s conjecture is a \textit{Robust} system.

Theorem

The following are equivalent over \(\text{RCA}_0 \)

- \(\text{FRA} \);
- Every scattered linear ordering can be written as a finite sum of indecomposable ones;
- Every indecomposable linear ordering can be written either as an \(\omega \)-sum or as an \(\omega^* \) sum of indecomposable l.o. of smaller rank.
- Well founded trees, labeled with \{+,-\} are well-quasi-ordered.
- Jullien classification of Extendible linear orderings
Fraïssé’s conjecture.

RCA$_0$ + Fraïssé’s conjecture is a *Robust* system.

Theorem

The following are equivalent over RCA$_0$

- FRA;
- *Every scattered linear ordering can be written as a finite sum of indecomposable ones;*
- *Every indecomposable linear ordering can be written either as an ω-sum or as an ω^* sum of indecomposable l.o. of smaller rank.*
- Well founded trees, labeled with $\{+, -\}$ are well-quasi-ordered.
- Jullien classification of Extendible linear orderings
Fraïssé’s conjecture.

RCA$_0$ + Fraïssé’s conjecture is a *Robust* system.

The following are equivalent over RCA$_0$

- FRA;
- Every scattered linear ordering can be written as a finite sum of indecomposable ones;
- Every indecomposable linear ordering can be written either as an ω-sum or as an ω^* sum of indecomposable l.o. of smaller rank.
- Well founded trees, labeled with $\{+,-\}$ are well-quasi-ordered.
- Jullien classification of Extendible linear orderings
Fraïssé’s conjecture.

RCA$_0$+ Fraïssé’s conjecture is a $Robust$ system.

Theorem

The following are equivalent over RCA$_0$

- FRA;
- Every scattered linear ordering can be written as a finite sum of indecomposable ones;
- Every indecomposable linear ordering can be written either as an ω-sum or as an ω^* sum of indecomposable l.o. of smaller rank.
- Well founded trees, labeled with \{+,-\} are well-quasi-ordered.
- Jullien classification of Extendible linear orderings
A Partition theorem

Theorem: [Folklore] If we color \(\mathbb{Q} \) with finitely many colors, there exists an embedding \(\mathbb{Q} \rightarrow \mathbb{Q} \) whose image has only one color.

Theorem: [Laver ’72]
For every ctable \(\mathcal{L} \), there exists \(n \in \mathbb{N} \), such that:
if \(\mathcal{L} \) is colored with finitely many colors, there is an embedding \(\mathcal{L} \rightarrow \mathcal{L} \) whose image has at most \(n \) many colors.

Theorem
\(\text{FRA is implied by Laver’s Theorem above over } \text{RCA}_0. \)

Conjecture
\(\text{FRA is equivalent to Laver’s Theorem above over } \text{RCA}_0. \)
A Partition theorem

Theorem: [Folklore] If we color \mathbb{Q} with finitely many colors, there exists an embedding $\mathbb{Q} \rightarrow \mathbb{Q}$ whose image has only one color.

Theorem: [Laver ’72]
For every ctble \mathcal{L}, there exists $n \in \mathbb{N}$, such that: if \mathcal{L} is colored with finitely many colors, there is an embedding $\mathcal{L} \rightarrow \mathcal{L}$ whose image has at most n many colors.

Theorem

FRA is implied by Laver’s Theorem above over RCA$_0$.

Conjecture

*FRA is equivalent to Laver’s Theorem above over RCA$_0$.***
The indecomposability statement

- \mathcal{L} is **scattered** if $\mathbb{Q} \not\preceq \mathcal{L}$.
- \mathcal{L} is **indecomposable** if whenever $\mathcal{L} = \mathcal{A} + \mathcal{B}$, either $\mathcal{L} \preceq \mathcal{A}$ or $\mathcal{L} \preceq \mathcal{B}$.
- \mathcal{L} is **indecomposable to the right** if for every non-trivial cut $\mathcal{L} = \mathcal{A} + \mathcal{B}$, we have $\mathcal{L} \preceq \mathcal{B}$.
- \mathcal{L} is **indecomposable to the left** if for every non-trivial cut $\mathcal{L} = \mathcal{A} + \mathcal{B}$, we have $\mathcal{L} \preceq \mathcal{A}$.

Theorem [Jullien ‘69] INDEC: Every scattered indecomposable linear ordering is indecomposable either to the right or to the left.

Theorem ([M 05])

*INDEC is strictly in between ACA$_0$ and ATR$_0$.***
The indecomposability statement

- \(\mathcal{L} \) is scattered if \(\mathbb{Q} \not\preceq \mathcal{L} \).
- \(\mathcal{L} \) is indecomposable if whenever \(\mathcal{L} = A + B \), either \(\mathcal{L} \preceq A \) or \(\mathcal{L} \preceq B \).
- \(\mathcal{L} \) is indecomposable to the right if for every non-trivial cut \(\mathcal{L} = A + B \), we have \(\mathcal{L} \preceq B \).
- \(\mathcal{L} \) is indecomposable to the left if for every non-trivial cut \(\mathcal{L} = A + B \), we have \(\mathcal{L} \preceq A \).

Theorem [Jullien '69] \(\text{INDEC} \): Every scattered indecomposable linear ordering is indecomposable either to the right or to the left.

Theorem ([M 05])
INDEC is strictly in between ACA\(_0\) and ATR\(_0\).
The indecomposability statement

- \(\mathcal{L} \) is scattered if \(\mathbb{Q} \not\preceq \mathcal{L} \).
- \(\mathcal{L} \) is indecomposable if whenever \(\mathcal{L} = \mathcal{A} + \mathcal{B} \), either \(\mathcal{L} \preceq \mathcal{A} \) or \(\mathcal{L} \preceq \mathcal{B} \).

- \(\mathcal{L} \) is indecomposable to the right if for every non-trivial cut \(\mathcal{L} = \mathcal{A} + \mathcal{B} \), we have \(\mathcal{L} \preceq \mathcal{B} \).
- \(\mathcal{L} \) is indecomposable to the left if for every non-trivial cut \(\mathcal{L} = \mathcal{A} + \mathcal{B} \), we have \(\mathcal{L} \preceq \mathcal{A} \).

Theorem [Jullien ’69] **INDEC**: Every scattered indecomposable linear ordering is indecomposable either to the right or to the left.

Theorem ([M 05])

INDEC is strictly in between ACA\(_0\) and ATR\(_0\).
Consider \(HYP = \{ \) hyperarithmetic sets\} \\
= \{ \) sets definable with a 1st order computable infinitary formula \} \\
Think of it as an \(\omega \)-model of second order arithmetic.

Theories that have \(HYP \) as their least \(\omega \)-models have been studied since the seventies.

Examples: \(\Delta^1_1\)-CA\(_0\), \(\Sigma^1_1\)-AC\(_0\), \(\Sigma^1_1\)-DC\(_0\) and weak-\(\Sigma^1_1\)-AC\(_0\).

Definition: We say that a sentence \(S \) is a sentence of hyperarithmetic analysis if the least \(\omega \)-model of \(RCA_0 + S \) is \(HYP \).

Theorem

\(INDEC \) is a sentence of hyperarithmetic analysis.
Consider $HYP = \{ \text{hyperarithmetic sets} \}$
$= \{ \text{sets definable with a 1st order computable infinitary formula} \}$
Think of it as an ω-model of second order arithmetic.

Theories that have HYP as their least ω-models have been studied since the seventies.

Examples: Δ^1_1-CA$_0$, Σ^1_1-AC$_0$, Σ^1_1-DC$_0$ and weak-Σ^1_1-AC$_0$.

Definition: We say that a sentence S is a sentence of hyperarithmetic analysis if the least ω-model of RCA$_0+S$ is HYP.

Theorem

INDEC is a sentence of hyperarithmetic analysis.
Consider \(HYP = \{ \text{hyperarithmetic sets} \} \)
\[= \{ \text{sets definable with a 1st order computable infinitary formula} \} \]
Think of it as an \(\omega \)-model of second order arithmetic.

Theories that have \(HYP \) as their least \(\omega \)-models have been studied since the seventies.

Examples: \(\Delta^1_1 \)-CA\(_0\), \(\Sigma^1_1 \)-AC\(_0\), \(\Sigma^1_1 \)-DC\(_0\) and weak-\(\Sigma^1_1 \)-AC\(_0\).

Definition: We say that a sentence \(S \) is a sentence of hyperarithmetic analysis if the least \(\omega \)-model of RCA\(_0+\)S is \(HYP \).

Theorem

\(\text{INDEC} \) is a sentence of hyperarithmetic analysis.
Finitely terminating games

To each well founded tree $T \subseteq \mathbb{N}^{<\mathbb{N}}$, we associate a game $G(T)$ which is played as follows. Player I starts by playing a number $a_0 \in \mathbb{N}$ such that $\langle a_0 \rangle \in T$. Then player II plays $a_1 \in \mathbb{N}$ such that $\langle a_0, a_1 \rangle \in T$, and then player I plays $a_2 \in \mathbb{N}$ such that $\langle a_0, a_1, a_2 \rangle \in T$. They continue like this until they get stuck. The first one who cannot play loses.

We will refer to games of the form $G(T)$, for T well-founded, as finitely terminating games.

Observation Finitely terminating games are in 1-1 correspondence with clopen games.
Finitely terminating games

Let $T_I = \{ \sigma \in T : |\sigma| \text{ is even} \}$, $T_{II} = \{ \sigma \in T : |\sigma| \text{ is odd} \}$. A strategy for I in $G(T)$ is a function $s : T_I \to \mathbb{N}$. A strategy s for I is a winning strategy if whenever I plays following the s, he wins. A game $G(T)$ is determined if there is a winning strategy for one of the two players.

We say that a game is completely determined if there is a map $d : T \to \{W, L\}$ such that for every $\sigma \in T$,

- $d(s) = W \iff I$ has a winning strategy in $G(T_\sigma)$, and
- $d(s) = L \iff II$ has a winning strategy in $G(T_\sigma)$.

Note that completely determined games are determined.
Finitely terminating games

- Let $T_I = \{\sigma \in T : |\sigma| \text{ is even}\}$, $T_{II} = \{\sigma \in T : |\sigma| \text{ is odd}\}$. A strategy for I in $G(T)$ is a function $s : T_I \to \mathbb{N}$.

- A strategy s for I is a winning strategy if whenever I plays following the s, he wins.

- A game $G(T)$ is determined if there is a winning strategy for one of the two players.

- We say that a game is completely determined if there is a map $d : T \to \{W, L\}$ such that for every $\sigma \in T$,
 - $d(s) = W \iff I$ has a winning strategy in $G(T_\sigma)$, and
 - $d(s) = L \iff II$ has a winning strategy in $G(T_\sigma)$.

Note that completely determined games are determined.
Known results

Theorem [Steel 1976] The following are equivalent over RCA_0.

- ATR_0;
- Every finitely terminating game is determined;
- Every finitely terminating game is completely determined.
New statements

- **CDG-CA**: Given a sequence \(\{ T_n : n \in \mathbb{N} \} \) of completely determined trees, there exists a set \(X \) such that
 \[\forall n \ (n \in X \iff I \text{ has a winning strategy in } G(T_n)). \]

- **CDG-AC**: Given a sequence \(\{ T_n : n \in \mathbb{N} \} \) of completely determined trees, there exists a sequence \(\{ d_n : n \in \mathbb{N} \} \) where for each \(n \), \(d_n : T \to \{ W, L \} \) is a winning function for \(G(T_n) \).

- **DG-CA**: Given a sequence \(\{ T_n : n \in \mathbb{N} \} \) of determined trees, there exists a set \(X \) such that
 \[\forall n \ (n \in X \iff I \text{ has a winning strategy in } G(T_n)). \]

- **DG-AC**: Given a sequence \(\{ T_n : n \in \mathbb{N} \} \) of determined trees, there exists a sequence \(\{ s_n : n \in \mathbb{N} \} \) of winning strategies for the \(T_n \)'s.
New statements

- **CDG-CA**: Given a sequence \(\{ T_n : n \in \mathbb{N} \} \) of completely determined trees, there exists a set \(X \) such that
 \[
 \forall n \ (n \in X \text{ iff } I \text{ has a winning strategy in } G(T_n)).
 \]

- **CDG-AC**: Given a sequence \(\{ T_n : n \in \mathbb{N} \} \) of completely determined trees, there exists a sequence \(\{ d_n : n \in \mathbb{N} \} \) where for each \(n \), \(d_n : T \to \{ W, L \} \) is a winning function for \(G(T_n) \).

- **DG-CA**: Given a sequence \(\{ T_n : n \in \mathbb{N} \} \) of determined trees, there exists a set \(X \) such that
 \[
 \forall n \ (n \in X \text{ iff } I \text{ has a winning strategy in } G(T_n)).
 \]

- **DG-AC**: Given a sequence \(\{ T_n : n \in \mathbb{N} \} \) of determined trees, there exists a sequence \(\{ s_n : n \in \mathbb{N} \} \) of winning strategies for the \(T_n \)'s.
New statements

- **CDG-CA**: Given a sequence \(\{ T_n : n \in \mathbb{N} \} \) of completely determined trees, there exists a set \(X \) such that
 \[\forall n \ (n \in X \iff I \text{ has a winning strategy in } G(T_n)) \].

- **CDG-AC**: Given a sequence \(\{ T_n : n \in \mathbb{N} \} \) of completely determined trees, there exists a sequence \(\{ d_n : n \in \mathbb{N} \} \) where for each \(n \), \(d_n : T \rightarrow \{W, L\} \) is a winning function for \(G(T_n) \).

- **DG-CA**: Given a sequence \(\{ T_n : n \in \mathbb{N} \} \) of determined trees, there exists a set \(X \) such that
 \[\forall n \ (n \in X \iff I \text{ has a winning strategy in } G(T_n)) \].

- **DG-AC**: Given a sequence \(\{ T_n : n \in \mathbb{N} \} \) of determined trees, there exists a sequence \(\{ s_n : n \in \mathbb{N} \} \) of winning strategies for the \(T_n \)’s.
New statements

- **CDG-CA**: Given a sequence \(\{ T_n : n \in \mathbb{N} \} \) of completely determined trees, there exists a set \(X \) such that
 \[\forall n \ (n \in X \text{ iff } I \text{ has a winning strategy in } G(T_n)) \].

- **CDG-AC**: Given a sequence \(\{ T_n : n \in \mathbb{N} \} \) of completely determined trees, there exists a sequence \(\{ d_n : n \in \mathbb{N} \} \) where for each \(n \), \(d_n : T \rightarrow \{ W, L \} \) is a winning function for \(G(T_n) \).

- **DG-CA**: Given a sequence \(\{ T_n : n \in \mathbb{N} \} \) of determined trees, there exists a set \(X \) such that
 \[\forall n \ (n \in X \text{ iff } I \text{ has a winning strategy in } G(T_n)) \].

- **DG-AC**: Given a sequence \(\{ T_n : n \in \mathbb{N} \} \) of determined trees, there exists a sequence \(\{ s_n : n \in \mathbb{N} \} \) of winning strategies for the \(T_n \)'s.
Introduction
The Main Five systems
The systems in higher end
Arithmetic Transfinite Recursion
Fraïssé’s Conjecture
Hyperarithmetic analysis

Implications between statements

Theorem

\[\Sigma_1^1 - DC_0 \leadsto \Sigma_1^1 - AC_0 \]

\[\Sigma_1^1 - AC_0 \downarrow \downarrow \ DG-AC \]

\[DG-CA \Leftrightarrow \Delta_1^1 - CA_0 \]

weak \(\Sigma_1^1 - AC_0 \)

\[CDG-AC \Leftrightarrow CDG-CA \]

\[\downarrow \downarrow \ JI. \]

INDEC

over RCA_0.

Reverse Mathematics and Arithmetic Transfinite Recursion.