Syllabus — Math 121, Mathematics for Elementary Teachers I
Harold Washington College — One of the City Colleges of Chicago

Semester: Fall 2004
Instructor: Dr. A. N. DiVito, Professor of Mathematics
Office: 702C • Phone: 312-553-5931 • e-mail: adivito@ccc.edu

Grading:
• Final grades will be determined by averaging the scores of the four full period examinations
• Assignments will be collected at the end of each class. Attendance and homework are mandatory and will be used to decide final grades in borderline cases. Poor attendance may result in a lower grade, at the discretion of the instructor, without regard to other performance.
• The usual, but not guaranteed, conversions from percent score to letter grade are as follows: 86–100: A; 80–85: A/B; 70–79: B; 60–69: C; 50–59: D; 00–49: F.

Topics and Assignments:

Chapter 1 — The Study of How Many

1.1 Place Value: A Truly Brilliant Idea
 Roman numerals; converting between base 10 and other bases
 Assignment: sectional problems

1.2 Facts vs. Algorithms
 Modeling bundle lending and borrowing with Lego®-like bricks
 Assignment: sectional problems

1.3 Primes, and Composites, and 1
 Divisibility tests for 2, 3, 5, 7, 9, 10, 11; Fundamental Theorem of Arithmetic; GCFs and LCMs
 Assignment: sectional problems

Chapter 2 — The Study of How Much

2.1 Straightedge and Compass Constructions
 Copy line segments and angles; extend a line segment; perpendiculars and parallels through given point on or off line; line segment and angle bisectors; circumcenter, incenter, orthocenter, centroid; transferring n equal parts
 Assignment: sectional problems

2.2 Numbers as Lengths
 Ancient Greeks model; using prime factorization to obtain equal parts of a whole
 Assignment: sectional problems
2.3 *Equivalent Fractions and Mixed Numbers*
Changing form by multiplying by one; converting between improper fractions and mixed numbers
Assignment: sectional problems

2.4 *The Operation of Addition (for Numbers as Lengths)*
Geometric interpretation; methods: backwards Z, JuMBO, cross-multiplication, prime factorization method, formula method; adding mixed numbers
Assignment: sectional problems

2.5 *The Operation of Multiplication (for Numbers as Lengths)*
Geometric interpretation; stretching/shrinking with computer or elastic materials models; scalar multiplication for vectors; multiplying mixed numbers
Assignment: sectional problems

Chapter 3 — The Modern Model: Numbers as Positions

3.1 *Flaws in the Ancient Greeks Model*
Area for rectangles and right triangles; the Pythagorean Theorem; the irrationality of the square root of 2; constructing a length of $\sqrt{2}$
Assignment: sectional problems

3.2 *The Real Number Line*
Zero, one, two, and three dimensional spaces; position replaces length; negative numbers; absolute value (magnitude) and inequalities
Assignment: sectional problems

3.3 *Decimals*
Terminating vs. nonterminating (repeating vs. nonrepeating); geometric interpretation; comparing sizes in fractional vs. decimal notations; multiplying and dividing by powers of ten; scientific notation; percent notation; nonuniqueness of decimal notation
Assignment: sectional problems

3.4 *The Algorithms Pertaining to Decimals*
Arithmetic operations algorithms; converting fractions and decimals; estimation and rounding
Assignment: sectional problems

Chapter 4 — Applications Rooted in Arithmetic

4.1 *Linear and Angular Measurement*
Assignment: TBA

4.2 *The English System and the Metric System (SI)*
Assignment: TBA
4.3 *The Scale Model*
Similarity for two parameter models; scale factor vs. aspect ratio; rectilinear modeling; ratio and proportion; per unit analysis; percent analysis; direct proportionality; straight line models
Assignment: sectional problems

4.4 *Ratio and Proportion*
The vertical and horizontal consistency principle; false models
Assignment: sectional problems

4.5 *Percents*
The employee wage raise model; language and uses of percents; simple interest and advanced simple interest problems
Assignment: sectional problems

Chapter 5 — The Basics of Algebra

5.1 *Real Number Arithmetic (for Numbers as Positions)*
Addition as movement along the number line; the identity and inverses for addition; definition of subtraction; multiplication as stretching/shrinking/reversing; the identity and inverses for multiplication; definition of division; division by 0 is undefined; \(-1 \cdot u = -u\); three meanings of the symbol \(\sim\)
Assignment: sectional problems

5.2 *The Cornerstones of Algebra*
The Order of Operations; commutative, associative, and distributive laws; generalized commutative, associative and distributive laws; terminology: we add terms to obtain a sum, we multiply factors to obtain a products
Assignment: sectional problems

5.3 *A Primer on Sets*
Explicit vs. implicit set notations; terminologies and notations; interval notation; Venn diagrams
Assignment: sectional problems

5.4 *Linear Equations in One Variable*
Terminologies and techniques involving linear equations in one variable; strategies for approaching word problems; phenomenological experiments: model cars, mixing solutions, rates of fill
Assignment: sectional problems

5.5 *Elementary Proofs*
(e.g., to include divisibility tests, the Euclidean Algorithm, the infinity of primes)
Assignment: TBA