Testing a Claim Regarding a Population Mean ## **Step 0: Verify Assumptions** The hypothesis test has two assumptions - a. The sample is obtained using simple random sampling - b. The sample has no outliers and the population from which the sample is drawn is normally distributed or the sample size, n, is large $(n \ge 30)$. ### **Step 1: State the Hypothesis** The hypothesis is a claim made regarding a population parameter - a. In this course it will be a claim about the mean μ but it could be any parameter - b. Determine the null and alternative hypotheses. | Two-Tailed | Left-Tailed | Right-Tailed | |-----------------------|-----------------------|--------------------------------| | $H_0: \mu = \mu_0$ | H_0 : $\mu = \mu_0$ | H_0 : $\mu = \mu_0$ | | $H_1: \mu \neq \mu_0$ | H_1 : $\mu < \mu_0$ | H ₁ : $\mu > \mu_0$ | **Note:** Some books use H_0 : $\mu \geq \mu_0$, H_0 : $\mu \leq \mu_0$ instead of H_0 : $\mu = \mu_0$, H_0 : $\mu = \mu_0$ ## Step 2: Select a Level of Significance α, the Critical Value(s), and the critical region - a. Select α based on the seriousness of making a Type I error, typical values are 0.01, 0.05, or 0.10. You should also know β , the type 2 error, and the relation of β to α . - b. Find the Critical Value(s) using α - c. Draw the diagram and shade the critical region (where you will be rejecting the null hypothesis) ### **Step 3: Calculate the Test Statistic** The number of standard deviations the sample mean is from the claimed population mean, μ 0. - a. When σ is known, then a z-value may be found. - b. When σ is unknown, then a *t*-value must be found. #### Step 4: Make a Decision about the Null Hypothesis - a. **Reject the null hypothesis** if the test statistics lies in the critical region (classical method) or the probability associated with the test statistic is less than the level of significance (p-value method) - b. **Do not reject the null hypothesis** if the test statistic does not lie in the critical region or the probability associated with the test statistic is greater than or equal to the level of significance. ## Step 5: State the Conclusion of the hypothesis test based on the decision with respect to the original claim. a. Original Claim is Ho **Reject Ho** There is sufficient evidence (at the α level) to reject the claim that **Do Not Reject Ho** There is not sufficient evidence (at the α level) to reject the claim that b. Original Claim is H_1 **Reject H**₀ There is sufficient evidence (at the α level) to support the claim that **Do Not Reject Ho** There is not sufficient evidence (at the α level) to support the claim that